If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.905x^2+15=18x
We move all terms to the left:
4.905x^2+15-(18x)=0
a = 4.905; b = -18; c = +15;
Δ = b2-4ac
Δ = -182-4·4.905·15
Δ = 29.7
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-\sqrt{29.7}}{2*4.905}=\frac{18-\sqrt{29.7}}{9.81} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+\sqrt{29.7}}{2*4.905}=\frac{18+\sqrt{29.7}}{9.81} $
| 5x10^3)=x(9x10^7 | | 5x10^3)=x(9x10^7 | | 5x10^3)=x(9x10^7 | | 5x10^3)=x(9x10^7 | | 5x10^3)=x(9x10^7 | | 5x10^3)=x(9x10^7 | | 5x10^3)=x(9x10^7 | | 5x10^3)=x(9x10^7 | | 1.5x+6=2x+27 | | 1.5x+6=2x+27 | | 1.5x+6=2x+27 | | 1.5x+6=2x+27 | | z(5z-1)=5z^2-z | | z(5z-1)=5z^2-z | | −2r−5=(−5r+9)≤6r+9+7 | | 60x0=600 | | 60x0=600 | | 60x0=600 | | 60x0=600 | | 60x0=600 | | 60x0=600 | | V2-6v-17=0 | | V2-6v-17=0 | | −2r−5(−5r+9)=≤6r+9+7 | | c=5/9(5)-32 | | c=5/9(5)-32 | | c=5/9(5)-32 | | c=5/9(5)-32 | | -10c=9+9c | | -10c=9+9c | | -10c=9+9c | | -10c=9+9c |